Artificial dance teacher

AI/ML Software, Internet of Things (IOT)

Our Client is an owner of a large network of entertainment facilities where gym services and other activities for customers are provided. The client decided to explore new lines of business and offered services for people who cannot visit gym regularly as his fitness segment was growing steadily.

AI/ML Software, Internet of things

Research, Strategy and Development

Tech stack
Google Cloud, Python 3, Facebook VideoPose3D, google storage, data flow, flutter

Project goals


There is a plenty of pose detection open source solutions like TensorFlow pose estimations or posest available for the software community. The key obstacle is that solutions are optimized for general use cases. Using such an open-source model in your business will, most likely, give you a lot of false-positive or true-negative results. The challenge that we tried to tackle is that our team aimed at not simply understanding the user position, but to analyzing whether the user pose reflects a trainer pose. Every person has one’s own parameters such as height, sex and flexibility. Consequently, something that might be an incorrect position for one person, can perfectly be acceptable for the other. For the purposes of this project, merely a 2D pose reconstruction was not enough to detect what the user is doing wrong. For example, we wanted to detect if the user slightly bends over his back when he/she does not need to. Another challenge was the requirement to analyze life videos in addition to pictures. This was helpful under the scenario that various people exercise at a different speed and if the trainer dances faster than you, it does not mean you are doing something wrong.


In order to be successful, we decided to move gradually with slow interactions. At first, we tried already existing pose-estimation solutions to find out what we can use and what limitations and problems we might face. After working with different data sets and models, like COCO, Leeds Sports Poses, MPII Human Pose, prebuild solutions on TenserFlow and OpenCV pose estimations we decided to move forward with a solution from Facebook VideoPose3D. Its pre-trained model is based on the Human 3.6M dataset. The strong side of that solution is the ability to analyze video with temporal convolutions and semi-supervised training. We also experimented with few cameras, camera positions and angles to get aggregate useful data. The 3D view provided the ability to use such techniques as User body segmentation to address the round back issues. Later we added dynamic time wrapping and anomaly detection to build a correlation between user and trainer speed. Our client created nearly 250 videos in order to build accurate training and validation sets. We also set up a product infrastructure on google cloud as part of our service. Shooting videos is a cumbersome and complex task. We found out that we can use unity to simulate videos with general problems during workouts. It was much cheaper and quicker approach as compared to shooting and reshooting real videos.


Potential users provided a positive feedback on the demos. Our client decided to focus on extending the machine learning network to understand more movements and has an ambitious goal to launch the product with a new mobile application next year. We, as a team, constantly work on new functionality and increasing our experience with pose estimation.

Project timeline

Step 1
Step 2
Step 3
Step 4
Step 5

Do you consider building a similar product?

Let's book a short meeting and immediately discuss with you all the details about your project.

Book a call